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This is a body of work, jointly with Yves Atchade and mostly with
Jeff Rosenthal and Nick Tawn.

It is presented in the series of papers: [Atchadé et al., 2011,
Roberts and Rosenthal, 2014, Tawn and Roberts, 2018,
Tawn et al., 2018, Roberts et al., 2020, Tawn et al., 2021]

This work is ongoing. Comments on the future directions very
welcome!
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The Problem

Aim: Evaluate

Eπ[f (x)] = ∫ f (x)π(x)dx

Solution: Simulate X1, . . . ,XK ∼ π then

Eπ[f (x)] ≈
1

K

K

∑
k=1

f (Xk)

How: Markov Chain Monte Carlo (MCMC).
Problem: What if π exhibits multimodality?
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Multimodal Samplers

There is an array of methodology:

Simulated (ST) and Parallel Tempering (PT),
[Marinari and Parisi, 1992], [Geyer, 1991];

Tempered Transitions, [Neal, 1996];

Mode Jumping, [Tjelmeland and Hegstad, 2001];

Equi-energy Sampler, [Kou et al., 2006];

Repel-Attract, [Tak et al., 2016];

Pseudo-extended Tempering, [Nemeth et al., 2017];

Many More!

Most approaches rely on state space augmentation.
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The Tempering Approach
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The Tempering Approach
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Simulated Tempering

Target density π on Rd .

Take collection of inverse temperatures, B = {β0, . . . βn} with
1 = β0 > β1 > . . . > βn.

Simulated tempering constructs a Markov chain, (X , β) on Rd ×B
with invariant distribution π̃ with

π̃(X , β) ∝ eK(β)(π(x))β .

for user-selected constants K(β).

Note that a natural choice might select K(β) such that π̃ assigns
equal mass to each temperature, although calculation of such
K(β) values involve integrals which are typically intractable.
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Simulated Tempering

Within temperature move according to a Metropolis-Hastings step
with invariant density

π̃(x ∣ β) ∝ (π(x))β .

Between temperature moves, from (x , βj) to either (x , βj+1) or
(x , βj−1) also according to an appropriate Metropolis-Hastings
move. Eg

With probability 1/2 decide to either propose to move from βj
to either βj−1 or βj+1. Call the proposed value βnew .

Accept this move with probability w.p.

1 ∧ π̃(x , βnew)
π̃(x , β)
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Simulated tempering and temperature distribution

In ST, the marginal distribution of β depends upon the choice of
constants {K(β); β ∈ B}.

It seems reasonable to want this distribution to be close to
uniform, in order to allow the chain to move easily through each
temperature.

This involves setting

K(β) = − log∫
Rd

(π(x))βdx

which is difficult to achieve as this integral is typically intractable.

Parallel tempering is an alternative to ST which avoids the need to
specify individual normalisation constants (K(β)) for each inverse
temperature β.
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Parallel Tempering (or MCMCMC)

PT stores a value at each inverse temperature at each iteration, ie
(X (0),X (1), . . .X (n)).

Within temperature moves are now carried out before
(conditionally independently at each inverse temperature).

Between temperature swaps are now also proposed:

Choose uniformly J from {1,2, . . .n};
propose to change (X (0),X (1), . . .X (J−1),X (J), . . .X (n)) to
(X (0),X (1), . . .X (J),X (J−1), . . .X (n));
accept this proposal with acceptance probability

1 ∧ (π(X (J−1))J(π(X (J))J−1

(π(X (J−1))J−1(π(X (J))J
.

It is easy to check that this move is in detailed balance with the
invariant density

n

∏
j=0

(π(x(j))βj .
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ST and PT

PT does not need user-defined normalisation constants. Therefore
it is preferred in practice.

However it can be shown that its convergence properties are
closely linked to that of the ST scheme with uniform distribution
across temperatures.

Theoretical results are usually simpler to state for ST, so that’s
what I’ll do in this presentation, assuming that equal mass is
placed on each inverse temperature.
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The temperature choice problem
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Choice of B is key for the efficiency of the algorithm:

βn must be sufficiently small that within temperature MCMC
moves can efficiently traverse the space.

If between-temperature spacing is too large, then proposed
jumps between neighbouring temperatures will be almost
always rejected, leading to poor mixing.

If within-temperature spacing is too large, then moves will be
very small and it will take many moves (and substantial
computational cost) to traverse between β0 and βn.
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ST in high-dimensions

Studying ST in finite-dimensional contexts is complicated by the
lack of tractability of the target density π.

However more can be said in high-dimensional asymptotic limits.

This is also particularly interesting for practical MCMC contexts.

Of course stylised examples need to be considered to get clean
asymptotic results.

The choice of scalings for βs can be couched as an MCMC scaling
problem.

The temperature scaling problem was considered for large d in
[Atchadé et al., 2011, Roberts and Rosenthal, 2014].
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High-dimensional limit: simplified setting

πd(x) ∝ edK
d

∏
i=1

f (xi) ,

Choose B(= B(d)) as follows: β
(d)
0 = 1, and

β
(d)
i+1 = β(d)i −

`(β(d)i )
d1/2

for some fixed C 1 function ` ∶ [0,1] → R>0, 1 ≤ i ≤ k(d) where χ is
some threshold inverse temperature and

k(d) = sup{i ∶ β(d)i ≥ χ} .
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β
(d)
i+1 = β(d)i −

`(β(d)i )
d1/2

So as d increases, B(d) is an increasingly dense discrete subset of
[χ,1]. ∣B(d)∣ = k(d) + 1 = O(d1/2).

The optimal temperature spacing problem translates to asking
what is the optimal choice of the function `.

The factor d−1/2 in the temperature spacing represents the
intrinsic dimensional cost forcing neighbouring temperatures closer.

Natural to consider convergence of the β process to some
stochastic process on [χ,1].
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Consider a joint process (β(d)n ,Xn), with Xn ∈ Rd , β
(d)
n ∈ B(d).

defined as follows.

We assume (unrealistically!) that the chain then immediately
jumps to stationary at the new temperature, i.e. that mixing within
a temperature is infinitely more efficient than mixing between
temperatures.

The process (β(d)n ,Xn) is thus a Markov chain with stationary
density

π̃(x , β) = edK(β)
d

∏
i=1

f β(xi) ,

where K(β) = − log ∫ f β(x)dx .
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Let I (β) = Varβ [(log f )(X )]

Theorem

{β(d)n } speeded up by a factor of d, converges weakly as d →∞ to
a diffusion limit {Yt}t≥0 satisfying

dYt = [2`2Φ(−`I
1/2

2
)]

1/2

dBt

+
⎡⎢⎢⎢⎢⎣
`(Y )`′(Y )Φ(−I

1/2`

2
) − `2 (`I

1/2

2
)
′

φ(−I
1/2`

2
)
⎤⎥⎥⎥⎥⎦
dt ,

for Yt in (χ,1) with reflecting boundaries at both χ and 1.
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For any function `, the limiting diffusion has invariant density on
[χ,1] proportional to `(y)−1.

The diffusion speed σ2(y) = 2`(y)2Φ(−`(y)I(y)
1/2

2 ) can be

maximised pointwise (for each y ∈ [χ,1], minimising its Dirichlet
form and therefore its convergence rate. (Also minimises Monte
Carlo error variances.)

Moreover we can decompose

σ2(y) = `(y)2 ×A(y)
where

A(y) = P[β move accepted ∣β = y] .

Theorem

The speed of this diffusion is maximised, and the asymptotic
variance of all L2 functionals is minimised, when the ` is chosen so
that the asymptotic temperature acceptance probability at each
and every temperature is equal to 0.234. 18 / 41



Comments on the basic convergence result

Result shows how to tune the spacing between inverse
temperatures in B.

O(d) convergence is a best case scenario under unrealistic
conditions. ∣B(d)∣ = O(d1/2), mixing time is O(d).

I (β) acts as a temperature-dependent friction. The lower its
value, the more efficient mixing of the temperature can be.

Under weaker conditions ([Atchadé et al., 2011]) not requiring
instantaneous mixing of the within-temperature moves, we
can get that the 0.234 strategy optimises local Expected
Squared Jumping Distance, ESJDβ:

ESJDβ = E[(βn+1 − βn)2 ∣ βn = β] .
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Critique of ST and PT

The Good: Mixing at the hot state.

The Bad: Costly procedure - number of temperatures
increases at least O(d1/2) leading to mixing which is at best
O(d). (Friction is too large.)

The Very Bad: Mode mass inconsistency - the proportion of
probability mass within each mode is not reserved under
tempering.

The Good can help us discover modes. But what about the Bad
and Very Bad?
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Mitigating the Bad? QuanTA- Accelerated Mixing

[Tawn and Roberts, 2019]
ST and PT inter-temperature moves are inhibited as within mode
dispersion varies as temperature changes

QuanTA preserves (x − µx)β1/2 when updating β, where µx
denotes the nearest mode centre:
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Effective? QuanTA- Optimal Scaling

Theorem (Optimal Scaling for the QuanTA Algorithm)

Target, π(x) ∝ ∏d
i=1 f (xi). Temp spacing β

′ − β = ε = `/d1/2.
Then the ESJDβ satisfies

lim
d→∞

d(ESJDβ) = 2`2Φ(− `√
2
[J(β)]1/2) ,

where J(β) is an explicit moment of X , f (X ) and f ′(X ).

Optimisation wrt ` induces an associated 0.234 rule.
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Theorem (Cold Temperature Scalings)

Under the setting of Theorem 3 then for large β

friction = J(β) = O ( 1

βk
) ,

where k > 2.

This induces an optimising value ˆ̀ such that ˆ̀= O (β
k
2 ), showing

that at the colder temperatures QuanTA permits higher order
behaviour than the standard PT scheme which has ˆ̀= O (β).

Useful but only guarantees improvements when temperature is
cold.
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Mass Inconsistency: The very bad

Power-tempering torpid mixing, [Woodard et al., 2009]:
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Five-dimensional example
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Attempted fix? HAT-Hessian Adjusted Tempering

[Tawn et al., 2018] introduces: πHAT
β (x) = [π(x)]β[π(µx ,β)]1−β
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The HAT method approximately preserves mass within each mode
as temperature varies.
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HAT improves mixing between modes
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Theory: transforming inverse temperature and mode index
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Transform this to:
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Inverse temperature and mode index, high-d limit

Similar stylised set up as before but with heteroskedasticity of
within-mode variation.

Theorem

Suitably scaled and with time speed up of d, HAT converges to a
skewed Brownian motion with reflecting boundaries.

Note that friction could be different in each mode and location of
reflection points is not generally symmetric.

For more than two modes, the limit is a transformed Walsh
Brownian motion.
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When modes are not symmetric

Weight-stabilising work in [Tawn and Roberts, 2018],
[Tawn et al., 2018].

Transformation-aided accelerated mixing in
[Tawn and Roberts, 2019].

Modal-skewness still a major problem: this affects both
QUANTA and especially HAT (weights not stable across
temperatures.
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Tempering and skewness

How does tempering affect skewness?

For small β (high temperature) skewness is increased.

For large β (low temperature) skewness is decreased.

On the other hand if we had completely symmetric,
Gaussian-looking modes which we know the location of, we don’t
need tempering. Instead we can construct highly effective MCMC
independence sampler mode hopping moves.

But such an approach would be hopeless in high-d settings with
skewed modes.
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ALPS- The Heuristic

Consider B = {1 = β0 < β1 < . . . < βn}, ie colder temperatures.
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At the cold temperature, use independence sampler MCMC move
to jump from mode to mode. 33 / 41



ALPS overview

Annealed Leap Point Sampler,
[Roberts et al., 2020, Tawn et al., 2021].

We need

1 a mode-finding algorithm for finding modes. (Typically just
use tempering to hot temperatures.

2 a mode-hoping independence sampler algorithm for the very
cold temperature. (Details not here, but uses ideas related to
the QUANTA algorithm.)

3 Temperature schedule for going cold and how cold?

The ALPS methodology can be carried out in conjunction with the
HAT and QUANTA strategies.
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ALPS - how cold?

Theorem (Scaling the Coldest Temperature Level)

With βmax denoting the coldest temperature level, then as d →∞
in order to induce a non-degenerate acceptance rate for the βmax

mode-leaping independence sampler then one must choose
βmax = `d = O(d). Furthermore, if βmax = `d, then in the limit as
d →∞ the expected acceptance rate of the leap-mode
independence sampler is given by

Eπβmax
(P(Accept)) = 2Φ

⎛
⎜
⎝
− 1√

2

¿
ÁÁÀ 15h′′′(0)2

36`(−h′′(0))3

⎞
⎟
⎠

where h(x) = log f (x) and Φ is the CDF of a standard Gaussian.

35 / 41



ALPS - Empirical Study
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Also shows excellent properties on a notoriously hard Bayesian
multimodal posterior from a seemingly unrelated regressions model.
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ALPS - Theory

In [Tawn et al., 2021] show that (in a stylised setting) B(d) needs
to be O(d1/2 log d).

Also B(d) can be improved to O(d1/2) if it is used in conjunction
with QUANTA.

In [Roberts et al., 2020] establish weak convergence result in the
temperature × mode space.

Thus ALPS with QUANTA can be O(d) despite having to explore
much colder temperatures.
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Further work

Can we obtain results which relax the strong assumptions on
within-mode mixing?

All this theory relies on smoothness (eg C 3 for ALPS result).
What can be said if we relax these assumptions?

More efficient, between-temperature dynamics, eg see
[Faizi et al., 2020]. Can we obtain O(d1/2) temperature
mixing?

Extensions to the robustness of ALPS for practitioners.
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