Causal Tensor Estimation

Devavrat Shah

Alberto Abadie Anish Agarwal Dennis Shen

Massachusetts Institute of Technology

Synthetic Interventions: https://arxiv.org/abs/2006.07691 Causal Tensor Estimation: working paper

Policy Evaluation

Anish Agarwal Abdullah Alomar Arnab Sarkar Dennis Shen

United States

Looking Across the Globe

What would have happened to United States if...

- United States had experienced (through appropriate policy)
 - Low mobility restriction
 - < 5% reduction [the reality]</p>
 - Moderate mobility restriction
 - 5-35% reduction
 - Severe mobility restriction
 - > 35% reduction

- In terms of
 - Trajectory of death counts in region of interest

It's Causal Inference

Potential Outcomes Framework [Newman '23, Rubin '74]

An individual contains many latent selves

Moderate

CLOSED DUE TO CORONAVIRUS

Y = observed outcome (health outcome)

 $M^{(d)} =$ potential outcome under intervention d (health outcome under policy d)

 $d^* = ext{observed}$ intervention (low restrictions), that is $\ Y \stackrel{\mathbb{E}}{=} M^{d^*}$

Goal: estimate $M^{(d)}, d \neq d^*$

Fundamental Question

Only one outcome can be revealed But want to know *all possible* outcomes

Let's Look At An Alternative Representation: Tensor

Causal Inference = Causal Tensor Estimation

- Causal Tensor Estimation
 - "Imputing" missing values in a Tensor
 - Potentially "confounded" observations (e.g. not missing at random)
 - The policy implemented in a country depends on the "characteristics" of the country!

What is Confounding, Why Is it a Problem

- To determine A vs B:
 - Access to 100 M + 100 W patients
- Randomized Trial
 - 50 M, 50 W receive A (similarly B)
 - Average efficacy: 5 for A and 10 for B
 - Conclusion: B is better than A
- Observational data ("confounded" selection)
 - 100 M get A, 100 W get B
 - Average efficacy: 10 for A and 0 for B
 - Conclusion: A is better than B

United States: Causal Tensor Estimation w Synthetic Interventions

United Kingdom: Causal Tensor Estimation w Synthetic Interventions

Brazil, Turkey: Causal Tensor Estimation w Synthetic Interventions

India, Ireland: Causal Tensor Estimation w Synthetic Interventions

Data Efficient Randomized Control

Anish Agarwal Vishal Misra Dennis Shen

Clinical Trial For Personalized Treatment

Intervention	Туре 1	Type 2	Туре 3	Туре 4	Туре 5	Туре 6
placebo	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Clinical Trial For Personalized Treatment

Real clinical trial: $D \times N$

Intervention	Туре 1	Туре 2	Туре 3	Туре 4	Туре 5	Туре 6
placebo	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

[the reality]

Data-efficient clinical trial: $2 \times N$

Intervention	Туре 1	Type 2	Туре 3	Type 4	Туре 5	Туре 6
placebo	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 1	\checkmark	\checkmark				
drug 2			\checkmark	\checkmark		
drug 3					\checkmark	\checkmark

[our proposal]

Clinical Trial For Personalized Treatment = Tensor Estimation

Real clinical trial: $D \times N$

Intervention	Туре 1	Type 2	Туре 3	Type 4	Type 5	Туре б
placebo	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
drug 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Data-efficient clinical trial: $2 \times N$

Intervention	Туре 1	Туре 2	Туре 3	Type 4	Туре 5	Туре 6
placebo	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√
drug 1	\checkmark	\checkmark				
drug 2			\checkmark	\checkmark		
drug 3					\checkmark	\checkmark

- Causal Tensor Estimation
 - Estimate outcomes for every (patient type, drug)
 - Using partial observations (no confounding)

Tensor Estimation Using Synthetic Interventions

Accurately predicts outcome of 6 x 4 trials using only 6 x 2 trials

Framework: Causal Tensor Estimation

Alberto Abadie Anish Agarwal Dennis Shen

Potential Outcomes Tensor

The Model

1. Sample (or given) latent unit, time, intervention factors

$$(u_n, v_t, w_d)$$

2. Sample potential outcomes tensor

3. Sample treatment assignment (determines sparsity pattern of observed tensor)

$$D(n,t): [N] \times [T] \to 2^{[D]}$$

4. Observe noisy measurements: sampled entries of

$$Y = M + \varepsilon$$

What Type of Confounding is Allowed?

The joint distribution of latent factors (confounders, covariates), treatment assignment and observations satisfy the following Causal Structure

What Type of Confounding is Allowed?

Recall

$$Y_{nt}^{(d)} = \sum_{\ell=1}^{r} u_{n\ell} \cdot v_{t\ell} \cdot w_{d\ell} + \varepsilon_{nt}$$

• Why is there confounding?

$$\mathcal{D} \not\!\!\!\perp Y_{nt}^{(d)}$$

- Treatment assignments correlated with latent factors (i.e. unmeasured confounders)
- Selection on Latent Factors

$$\mathcal{D} \! \perp \!\!\!\perp Y_{nt}^{(d)} \mid \mathcal{LF}$$

Causal Tensor Estimation

1. Sample (or given) latent unit, time, intervention factors

 (u_n, v_t, w_d)

2. Sample potential outcomes tensor

3. Sample treatment assignment (determines sparsity pattern of observed tensor)

$$D(n,t): [N] \times [T] \to 2^{[D]}$$

4. Observe noisy measurements: sampled entries of

 $Y = M + \varepsilon$

A Method: Synthetic Interventions

Anish Agarwal Dennis Shen

Key Insight

leverage data from other units learn relationships between units

Key Insight

leverage data from other units learn relationships between units

[Abadie et al '03, '10] [Abadie, A. (2020). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature]

Under intervention *d*

$$oldsymbol{M}^{(d)} = \sum_{\ell=1}^r u_\ell \otimes (w_{d\ell} \cdot v_\ell) = oldsymbol{U}(oldsymbol{V}^{(d)})^T$$

- U describes an invariant relationship between units across interventions
- **Each** intervention *d* is a linear transformation of *U*
- SI learns linear relationship between rows of U

Why does SI Work?

(WLOG) suppose unit 1 satisfies:

$$u_{1\ell} = \sum_{n>1} \beta_n^* \cdot u_{n\ell}$$

(occurs w.h.p.)

(low rank = few canonical unit profiles)

$$M_{1t}^{(d)} = \sum_{\ell=1}^{r} u_{1\ell} \cdot v_{t\ell} \cdot w_{d\ell}$$
 for any (t,d)
(via tensor factor model)

$$=\sum_{\ell=1}^{r}\sum_{n>1}\beta_{n}^{*}\cdot u_{n\ell}\cdot v_{t\ell}\cdot w_{d\ell}$$

(via assumption)

SI (and thus SC) exists

$$\begin{split} \theta_n^{(d)} &= \text{ individual potential outcome under every intervention} \\ &\text{averaged over post-intervention period} \\ &= \frac{1}{T_1} \sum_{t > T_0} \mathbb{E}[Y_{nt}^{(d)} \mid \{u_t^{(d)}, v_n : t > T_0\}] \end{split}$$

$$\widehat{\theta_n^{(d)}} - \theta_n^{(d)} = \mathcal{O}_p\left(\frac{1}{T_0^{1/4}} + \frac{\|\tilde{w}^{(n,d)}\|_2}{\sqrt{T_1}} + \frac{\|\tilde{w}^{(n,d)}\|_1}{\min\{\sqrt{T_0},\sqrt{N_d}\}}\right)$$

Normality

$$\sqrt{T_1}(\widehat{\theta}_n^{(d)} - \theta_n^{(d)}) \xrightarrow{d} \mathcal{N}\left(0, \sigma^2 \text{plim} \| \widetilde{w}^{(n,d)} \|_2^2\right)$$

95% confidence interval

$$\theta_n^{(d)} \in \left[\widehat{\theta}_n^{(d)} \pm \frac{1.96 \,\widehat{\sigma} \|\widehat{w}^{(n,d)}\|_2}{\sqrt{T_1}}\right]$$

Computable quantities (with provable guarantees)

Subspace Inclusion: Hypothesis Test

 $H_0 : \operatorname{span}(\boldsymbol{V}_{\operatorname{post}}) \subseteq \operatorname{span}(\boldsymbol{V}_{\operatorname{pre}})$ $H_1 : \operatorname{span}(\boldsymbol{V}_{\operatorname{post}}) \nsubseteq \operatorname{span}(\boldsymbol{V}_{\operatorname{pre}})$

If H_0 holds: $\|(\boldsymbol{I} - \boldsymbol{V}_{\text{pre}} \boldsymbol{V}_{\text{pre}}^T) \boldsymbol{V}_{\text{post}}\|_F^2 = 0$

If H_1 holds:

$$\|(\boldsymbol{I} - \boldsymbol{V}_{\text{pre}} \boldsymbol{V}_{\text{pre}}^T) \boldsymbol{V}_{\text{post}}\|_F^2 > 0$$

Subspace Inclusion: Hypothesis Test

 $H_0 : \operatorname{span}(\boldsymbol{V}_{\operatorname{post}}) \subseteq \operatorname{span}(\boldsymbol{V}_{\operatorname{pre}})$ $H_1 : \operatorname{span}(\boldsymbol{V}_{\operatorname{post}}) \nsubseteq \operatorname{span}(\boldsymbol{V}_{\operatorname{pre}})$

Test statistic

$$\widehat{ au} = \|(oldsymbol{I} - \widehat{oldsymbol{V}}_{ ext{pre}} \widehat{oldsymbol{V}}_{ ext{pre}}^T) \widehat{oldsymbol{V}}_{ ext{post}} \|_F^2$$

Test

For any significance level $\alpha \in (0, 1)$ Retain H_0 if $\hat{\tau} \leq \tau(\alpha)$ Reject H_0 if $\hat{\tau} > \tau(\alpha)$

Parting Remarks

Statistical & Computational Tradeoffs in Causal Inference

Causal Tensor Estimation: A Generic Framework

- Enables novel estimation
 - Regression discontinuity design in the panel data setting
- Experiment design
 - Observational pattern in tensor to enable identification
- Computational and statistical tradeoff
 - A missing discussion in Causal inference
- Role of error metric for tensor estimation
 - What causal quantities can be identified (or not)
- Causal estimation methods
 - SI is one such method, but more is needed

Questions

+ please feel free to contact at: devavrat@mit.edu

Appendix

Development Economics

Development Economics [Banerjee et al 2019]

Recreating Observed Immunization Rates

(RCT estimate)

Heterogenous villages \rightarrow SI is a stronger predictor than RCT estimator

	Policy Recommendation Method	Avg. net increase in immunization rates (estimated)
	Random policy (per village)	1.0
matches authors'	→ Best RCT policy (031)	1.3
recommended policy	SI's personalized policy (per village)	2.8

A/B Testing in E-commerce

We get access to access to customer engagement trajectories of all 25 user groups under all interventions

Ideal RCT setting – experiments run

Intervention	Groups 1-8	Groups 9-16	Groups 17-25
Control	\checkmark	\checkmark	\checkmark
10% Discount	\checkmark	\checkmark	\checkmark
30% Discount	\checkmark	\checkmark	\checkmark
50% Discount	\checkmark	\checkmark	\checkmark

Synthetic Interventions – experiments run

Intervention	Groups 1-8	Groups 9-16	Groups 17-25
Control	\checkmark	\checkmark	\checkmark
10% Discount	\checkmark		
30% Discount		\checkmark	
50% Discount			\checkmark

Hypothesis Test

Intervention	Metric	Projection Test
10% Discount	Subscription rate	(Pass, $\alpha = 0.05$)
30% Discount	Subscription rate	(Pass, $\alpha = 0.05$)
50% Discount	Subscription rate	(Pass, $\alpha = 0.05$)

- Quantifying prediction accuracy
 - R² score (access to true counterfactual)

$$R^{2} = 1 - \frac{\mathrm{SS}_{\mathrm{res}}}{\mathrm{SS}_{\mathrm{reg}}}$$
$$\mathrm{SS}_{\mathrm{reg}} = \sum_{i} \left(Y_{ni}^{(d)} - \bar{Y}_{n}^{(d)} \right)^{2}$$
$$\mathrm{SS}_{\mathrm{res}} = \sum_{i} \left(Y_{ni}^{(d)} - \hat{Y}_{ni}^{(d)} \right)^{2}$$

- Quantifying utility over standard RCTs
- R² score (using RCT as a predictor)

$$R_{\rm rct}^2 = 1 - \frac{\rm SS_{\rm res}}{\rm SS_{\rm rct}}$$
$$\rm SS_{\rm rct} = \sum_i \left(Y_{ni}^{(d)} - \frac{1}{|\mathcal{I}^{(d)}|} \sum_{m \in \mathcal{I}^{(d)}} Y_{mi}^{(d)} \right)^2$$

Intervention	R ² score (True Counterfactual)	R ² score (RCT Baseline)
10% Discount	0.76	0.98
30% Discount	0.56	0.99
50% Discount	0.75	0.98
accurate re customer e	heterogeneou user groups	

Synthetic Interventions simulates ideal RCT experiment